Module Code	SB-4317		
Module Title	Climate Change Biology		
Degree/Diploma	Bachelor of Science (Biology)		
Type of Module	Major Option		
Modular Credits	4	Total Student Workload	8 hours/week
		Contact Hours	6 hours/week
Prerequisites	SB-2203 Animal Form and Function; SB-2208 Principles in Animal Physiology		
Anti-requisite	None		

Aims

The aim of this module is to study how natural ecological systems are likely to be impacted by climate change. The module will study climate change from the perspective of habitat, the behavioural and physiological responses of organisms to change in habitat conditions, and community level responses. The module with focus on environmental temperature (warming) but also consider acidification of marine ecosystems.

Learning Outcomes

On successful completion of this module, a student will be expected to be able to:

On successjured	Jinpicu	on of this module, a student will be expected to be able to.
Lower order :	10%	 Understand historical climates and mechanisms for global climate variation, global patterns of species distribution, habitat thermal variation, the factors affecting body temperature, and heat budget models Understand organismal thermal limits, heat tolerance and the thermal energetics of ectotherms exposed to habitat warming
Middle order :	10%	 Review morphological, behavioural and physiological thermoregulation of ectotherms, optimality of thermal performance, thermal generalists-specialists Review climate vulnerability in terms of exposure, sensitivity and adaptation, including the application of warming tolerance metrics Assess the consequences of elevated CO₂ on ocean water chemistry and life, and on agricultural production and forest ecosystems
Higher order:	80%	 Perform field and laboratory works and interpret spatial and temporal variation in the temperature of an ectotherm's habitat Conduct experiments to determine the physiological thermal performance and the lethal temperature of an ectotherm Collect, organize and analyse data and make critical discussion; measure effects of ocean acidification on model organisms Perform oral presentations on practical works, write reports

Module Contents

- Historical and global climatic variation
- Habitat temperature, operative temperature, organismal temperature, heat budget models
- Behavioural and physiological attributes for buffering thermal change
- Factors influencing climate warming vulnerability
- Thermal performance curves, thermal limits and energetics
- Ocean acidification
- Carbon capture, agricultural production and forest ecosystems
- Experiments to determine the thermal limits of small ectothermic animals
- Experiments on effects of coastal acidification exposure

Assessment	Formative	Presentation by students and discussion among the students will be used	
	assessment	to test the students' understanding.	
	Summative	Examination: 0%	
	assessment	Coursework: 100%	
		- 3 individuals written reports (45%)	
		- 2 class tests (40%)	
		- 1 individual oral presentation (15%)	