Module Title Equilibrium electrochemistry and ion transport Degree/Diploma Bachelor of Science (Chemistry) Type of Module Major Core Modular Credits 2 Total student Workload 4 hours/week Prerequisite None 2 hours/week
Degree/Diploma Bachelor of Science (Chemistry) Type of Module Major Core Modular Credits 2 Total student Workload 4 hours/week Prerequisite None Volume Volume Volume Volume
Type of Module Major Core Modular Credits 2 Total student Workload 4 hours/week Prerequisite None 2 hours/week
Modular Credits 2 Total student Workload 4 hours/week Contact hours 2 hours/week Prerequisite None Volume
Z Contact hours 2 hours/week Prerequisite None 2 None
Prerequisite None
Anti-requisite None
Aims
The aim of this module is to introduce students to the fundamentals of electrochemistry and the
analytical applications of electrochemistry.
Learning Outcomes
On successful completion of this module, a student will be expected to be able to:
Lower order: 40% - understand the departure of electrolyte solutions from ideality
- understand the concepts of ionic activities, activity coefficients, the extent
Of Ion and solvent interactions in electrolyte solutions
write down electrode and cell reactions
- while down electrode and cell reactions
- calculate electrode and cell potentials
- apply the role of ionic transport in understanding the conductivity of
electrolyte solutions and to make calculations involving molar and ionic
conductivities
Higher order: 20% - present the results of analyses in a concise manner and work independently
and collaboratively in a team in solving chemical problems
Module Contents
- Thermodynamic properties of ions in solution: thermodynamic functions of formation and ion
activities and activity coefficients, modelling of electrolyte solutions using the Debye-Huckel
theory and its extensions.
- <i>Electrochemical cells:</i> Half-reactions and electrodes, the electrode electrolyte interface varieties
of cells, standard potentials, the Nernst equation relating electrode potentials to activities,
electrode reactions and cell reactions.
- Application of standard potentials: The electrochemical series, the measurement of pH and pR_a ,
applications of electrochemical systems
- Molecular motions in liquids: conductivities of electrolyte solutions the mobilities of ions molar
and ionic conductivities, the dependence of conductivities on ionic activity and ionic strength.
the uses of conductivity measurements.
Assessment Formative
assessment
Summative Examination: 60%
assessment Coursework: 40%
- 2 written assignments (20%)
- 2 class tests (20%)