Module code	SC-4346					
Module Title		Quantum Mechanics and Molecular Spectroscopy				
Degree/Diploma		Bachelor of Science (Chemistry)				
Type of Module		Major Option				
Modular Credits		2		Total student Workload	4	hours/week
		Z		Contact hours	2	hours/week
Prerequisite		None				
Anti-requisite		None				
Aims						
The aim of this module is to provide students with fundamental concepts of quantum mechanics						
and the use of quantum mechanical principles in molecular spectroscopy.						
Learning Outc	omes					
On successful completion of this module, a student will be expected to be able to:						
Lower order :	50%	- understand the fundamental concept of quantum mechanics.				
		- underst	and th	ne other key problems associated with classical mechanics.		
		- underst	and th	concept of light as a wave and wave-particle duality.		
Middle order :	30%	- describe the implications of Heisenberg's uncertainty principle.				
		- describe deBroglie equation and confinement energy.				
	- describe Schrodinger equation					
Higher order:20%- analyse rotational or vibrational spectrum of a diatomic in						in the gas phase.
	- analyse a certain topic independently and collaboratively in a team					
Module Conte						
 History and development of quantum mechanics 						
 Wave particle duality and deBroglie 						
 Semi-classical Schrodinger equation and fundamental approach to Schrodinger equation. 						
 Rotational and vibrational spectroscopy 						
Assessment	Formative		Tutorial and feedback			
	asses	assessment				
	Summative		Examination: 60%			
	asses	sment	Coursework: 40%			
			- 2 w	ritten assignments (20%)		
			- 2 cl	ass tests (20%)		