Module Title Biosensors Biochips and Nanobiotechnology Degree/Diploma Bachelor of Science (Chemistry) Type of Module Major Option Modular Credits 4 Total student Workload 10 hours/week Prerequisite None Contact hours 2 hours/week Anti-requisite None Contact hours 2 hours/week Aims None Contact hours 10 hours/week Or acquire in-depth knowledge, analysis and competence of various biosensing, biochips and nanobiotechnology platforms. The module will also be introduced with laboratory demonstration/hands-on experiment. Learning Outcomes Consuccessful completion of this module, a student will be expected to be able to: Lower order: 40% - Investigate critical components of assay/protocol development of different diagnostics depending on their application - Investigate critical components of assay/protocol development - Student-centred pedagogy through entrepreneurship and commercialization Module Contents - Innovating parallel bio- and nanotechnological tool development - Student-centred pedagogy through entrepreneurship and commercialization Module Contents - Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc, - Recognition	Module code		SC-4368						
Degree/Diploma Bachelor of Science (Chemistry) Type of Module Major Option Modular Credits 4 Total student Workload 10 hours/week Prerequisite None Anti-requisite None Anti-requisite None Aims To acquire in-depth knowledge, analysis and competence of various biosensing, biochips and nanobiotechnology platforms. The module will also be introduced with laboratory demonstration/hands-on experiment. Image: Completion of this module, a student will be expected to be able to: Lower order: 40% - Understand the overall theory and applications of biosensors, biochips and nanobiotechnology approaches Middle order: 40% - Innovating parallel bio- and nanotechnological tool development of different diagnostics depending on their application Higher order: 20% - Innovating parallel bio- and nanotechnological tool development - Student-centred pedagogy through entrepreneurship and commercialization Module Contents	Module Title		Biosensors Biochips and Nanobiotechnology						
Type of Module Major Option Modular Credits 4 Total student Workload 10 hours/week Prerequisite None Anti-requisite None Anti-requisite None Aims To acquire in-depth knowledge, analysis and competence of various biosensing, biochips and nanobiotechnology platforms. The module will also be introduced with laboratory demonstration/hands-on experiment. Image: Completion of this module, a student will be expected to be able to: Lower order: 40% - Understand the overall theory and applications of biosensors, biochips and nanobiotechnology approaches Middle order: 40% - Innovating parallel bio- and nanotechnological tool development of different diagnostics depending on their application Higher order: 20% - Innovating parallel bio- and nanotechnological tool development - Student-centred pedagogy through entrepreneurship and commercialization Module Contents - Student-centred pedagogy through and roos-linking etc. -Biosensor modification and treatment: Entrapment, encapsulation, and cross-linking etc. -Biosensor modification and treatment: Food (Raw and processel); Bio Specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outolok: Healthcare, foo	Degree/Diploma		Bachelor of Science (Chemistry)						
Modular Credits 4 Total student Workload 10 hours/week Prerequisite None 2 hours/week Anti-requisite None Anti-requisite None Aims To acquire in-depth knowledge, analysis and competence of various biosensing, biochips and nanobiotechnology platforms. The module will also be introduced with laboratory demonstration/hands-on experiment. Learning Outcomes On successful completion of this module, a student will be expected to be able to: Lower order: 40% - Understand the overall theory and applications of biosensors, biochips and nanobiotechnology approaches Middle order: 40% - Investigate critical components of assay/protocol development of different diagnostics depending on their application Higher order: 20% - Innovating parallel bio- and nanotechnological tool development - Student-centred pedagogy through entrepreneurship and commercialization Module Contents -Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc, -Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment:Entrapment, encapsulation, and cross-linking etc. -Biosensor design and percessing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and percess industries, security and defence	Type of Module		Major Option						
Contact hours 2 hours/week Prerequisite None Anti-requisite None Anti-requisite None Anti-requisite None Aims To acquire in-depth knowledge, analysis and competence of various biosensing, biochips and nanobiotechnology platforms. The module will also be introduced with laboratory demonstration/hands-on experiment. Learning Outcomes On successful completion of this module, a student will be expected to be able to: Lower order: 40% - Understand the overall theory and applications of biosensors, biochips and nanobiotechnology approaches Middle order: 40% - Investigate critical components of assay/protocol development of different diagnostics depending on their application Higher order: 20% - Innovating parallel bio- and nanotechnological tool development - Student-centred pedagogy through entrepreneurship and commercialization Module Contents -Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc, -Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment:Entrapment, encapsulation, and cross-linking etc. -Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva,	Modular Credits		4	Total s	tudent Workload	10)	hours/week	
Prerequisite None Anti-requisite None Aims To acquire in-depth knowledge, analysis and competence of various biosensing, biochips and nanobiotechnology platforms. The module will also be introduced with laboratory demonstration/hands-on experiment. Learning Outcomes On successful completion of this module, a student will be expected to be able to: Lower order: 40% - Understand the overall theory and applications of biosensors, biochips and nanobiotechnology approaches Middle order: 40% - Investigate critical components of assay/protocol development of different diagnostics depending on their application Higher order: 20% - Invosting parallel bio- and nanotechnological tool development - Student-centred pedagogy through entrepreneurship and commercialization - Student-centred pedagogy through entrepreneurship and commercialization Module Contents - Investing processing: Electrochemical, optical, magnetic, labels etc. - Biosensor for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment: Entrapment, encapsulation, and cross-linking etc. - Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. - Sample processing and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. <tr< th=""><th colspan="2"></th><th></th><th>Contac</th><th>ct hours</th><th>2</th><th></th><th>hours/week</th></tr<>				Contac	ct hours	2		hours/week	
Anti-requisite None Aims None To acquire in-depth knowledge, analysis and competence of various biosensing, biochips and nanobiotechnology platforms. The module will also be introduced with laboratory demonstration/hands-on experiment. Learning Outcomes On successful completion of this module, a student will be expected to be able to: Lower order: 40% - Understand the overall theory and applications of biosensors, biochips and nanobiotechnology approaches Middle order: 40% - Investigate critical components of assay/protocol development of different diagnostics depending on their application Higher order: 20% - Investigate critical components of assay/protocol development - Student-centred pedagogy through entrepreneurship and commercialization - Student-centred pedagogy through entrepreneurship and commercialization Module Contents - Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc, - Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment:Entrapment, encapsulation, and cross-linking etc. - Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. - Sample processing and fubrication, lab-on-a-chip, microfluidics etc -Application of b	Prerequisite		None						
Aims To acquire in-depth knowledge, analysis and competence of various biosensing, biochips and nanobiotechnology platforms. The module will also be introduced with laboratory demonstration/hands-on experiment. Learning Outcomes On successful completion of this module, a student will be expected to be able to: Lower order: 40% - Understand the overall theory and applications of biosensors, biochips and nanobiotechnology approaches Middle order: 40% - Investigate critical components of assay/protocol development of different diagnostics depending on their application Higher order: 20% - Innovating parallel bio- and nanotechnological tool development - Student-centred pedagogy through entrepreneurship and commercialization Module Contents - -Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc, -Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment:Entrapment, encapsulation, and cross-linking etc. -Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. -Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, la	Anti-requisite		None						
To acquire in-depth knowledge, analysis and competence of various biosensing, biochips and nanobiotechnology platforms. The module will also be introduced with laboratory demonstration/hands-on experiment. Learning Outcomest On successful completion of this module, a student will be expected to be able to: Lower order: 40% - Understand the overall theory and applications of biosensors, biochips and nanobiotechnology approaches Middle order: 40% - Investigate critical components of assay/protocol development of different diagnostics depending on their application Higher order: 20% - Innovating parallel bio- and nanotechnological tool development - Student-centred pedagogy through entrepreneurship and commercialization Module Contents - Student-centred pedagogy through entrepreneurship and commercialization -Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc, -Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment:Entrapment, encapsulation, and cross-linking etc. -Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. -Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on	Aims								
Learning Outcomes On successful completion of this module, a student will be expected to be able to: Lower order: 40% - Understand the overall theory and applications of biosensors, biochips and nanobiotechnology approaches Middle order: 40% - Investigate critical components of assay/protocol development of different diagnostics depending on their application Higher order: 20% - Investigate critical components of assay/protocol development - Student-centred pedagogy through entrepreneurship and commercialization Module Contents - Student-centred pedagogy through entrepreneurship and commercialization - Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc, -Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment:Entrapment, encapsulation, and cross-linking etc. -Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. -Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detectio	To acquire in-depth knowledge, analysis and competence of various biosensing, biochips and nanobiotechnology platforms. The module will also be introduced with laboratory demonstration/hands-on experiment.								
On successful completion of this module, a student will be expected to be able to: Lower order: 40% - Understand the overall theory and applications of biosensors, biochips and nanobiotechnology approaches Middle order: 40% - Investigate critical components of assay/protocol development of different diagnostics depending on their application Higher order: 20% - Innovating parallel bio- and nanotechnological tool development - Student-centred pedagogy through entrepreneurship and commercialization Module Contents -Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc, -Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment:Entrapment, encapsulation, and cross-linking etc. -Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. -Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc. Assessment Formative assessment	Learning Outcomes								
Lower order: 40% - Understand the overall theory and applications of biosensors, biochips and nanobiotechnology approaches Middle order: 40% - Investigate critical components of assay/protocol development of different diagnostics depending on their application Higher order: 20% - Innovating parallel bio- and nanotechnological tool development - Student-centred pedagogy through entrepreneurship and commercialization Module Contents - Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc, -Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment:Entrapment, encapsulation, and cross-linking etc. -Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and fabrication: Screen-printing, photolithography, Bio MEMS, Nanomaterials. -Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc. Assessment Tutorial and feedback Summative assessment Tutorial and feedback	On successful completion of this module, a student will be expected to be able to:								
Image: manobiotechnology approaches Middle order: 40% - Investigate critical components of assay/protocol development of different diagnostics depending on their application Higher order: 20% - Innovating parallel bio- and nanotechnological tool development - Student-centred pedagogy through entrepreneurship and commercialization Module Contents - Student-centred pedagogy through entrepreneurship and commercialization -Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc, -Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment:Entrapment, encapsulation, and cross-linking etc. -Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. -Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc. Assessment Formative assessment Tutorial and feedback Summative assessment Examination: 60%	Lower order: 40% - Understand the overall theory and applications of biosensors, biochip						s, biochips and		
Middle order:40%- Investigate critical components of assay/protocol development of different diagnostics depending on their applicationHigher order:20%- Innovating parallel bio- and nanotechnological tool development - Student-centred pedagogy through entrepreneurship and commercializationModule Contents:- Student-centred pedagogy through entrepreneurship and commercialization-Introduction: Definition: Definition:history of Biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etcBiosensor modification:and treatment:Entrapment, encapsulation, and cross-linking etcDetection met+ods and signal processing:Electrochemical, optical, magnetic, labels etcBiosensor design and fabrication:Screen-printing, photolithography, BioMEMS, NanomaterialsSample processing and pre-treatment:Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etcPoint of care (POC) devices:Microfabrication, lab-on-a-chip, microfluidics etc-Application of biosensors and future commercialization outlook:Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc.AssessmentFormative assessmentTutorial and feedbackSummative assessmentTutorial and feedbackCoursework:40%	nanobiotechnology approaches								
Image: matrix and the set of the se	Middle order: 40% - Investigate critical components of assay/protocol development of differen							ent of different	
Higher order: 20% - Innovating parallel bio- and nanotechnological tool development - Student-centred pedagogy through entrepreneurship and commercialization Module Contents -Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc, -Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment:Entrapment, encapsulation, and cross-linking etc. -Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. -Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc. Assessment Formative assessment Tutorial and feedback Summative assessment Examination: 60%		diagnostics depending on their application							
A Student-centred pedagogy through entrepreneurship and commercialization Module Contents -Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc, -Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment:Entrapment, encapsulation, and cross-linking etc. -Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. -Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc. Assessment Formative assessment Further and process industries, 40%	Higher order:	er order: 20% - Innovating parallel bio- and nanotechnological tool development							
Module Contents -Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc, -Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment:Entrapment, encapsulation, and cross-linking etc. -Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. -Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc. Assessment Tutorial and feedback Summative assessment Examination: 60%	- Student-centred pedagogy through entrepreneurship and commercialization							mmercialization	
-Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc, -Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment:Entrapment, encapsulation, and cross-linking etc. -Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. -Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc. Assessment Formative assessment Formative assessment Tutorial and feedback Coursework: 40%	Module Contents								
-Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc. -Biosensor modification and treatment:Entrapment, encapsulation, and cross-linking etc. -Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. -Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc. Assessment Formative assessment Formative assessment Tutorial and feedback Coursework: 40%	-Introduction: Definition, history of Biosensors, Biochips and Nanobiotechnology etc,								
-Detection methods and signal processing: Electrochemical, optical, magnetic, labels etc. -Biosensor design and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. -Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc. Assessment Formative assessment Tutorial and feedback Summative assessment Examination: 60%	-Recognition receptors for biosensors: Nucleic acids (DNA/RNA), aptamers, enzymes/proteins, etc.								
-Biosensor design and fabrication: Screen-printing, photolithography, BioMEMS, Nanomaterials. -Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc. Assessment Formative assessment Tutorial and feedback Summative assessment Examination: 60%	-Detection methods and signal processing: Electrochemical optical magnetic labels etc.								
-Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine, saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc. Assessment Formative assessment Tutorial and feedback Summative assessment Examination: 60%	-Biosensor design and fabrication: Screen-printing, photolithography, BioMFMS, Nanomaterials								
saliva, tissues, etc. Microorganisms, toxin and heavy metals. -Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc. Assessment Formative assessment Tutorial and feedback Summative assessment Examination: 60% Coursework: 40%	-Sample processing and pre-treatment: Food (Raw and processed); Bio specimens i.e. blood, cell, urine,								
-Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc -Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc. Assessment Formative assessment Summative assessment Tutorial and feedback Coursework: 40%	saliva, tissues, etc. Microorganisms, toxin and heavy metals.								
-Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods detection, environmental and process industries, security and defence etc. Assessment Tutorial and feedback Summative assessment Examination: 60%	-Point of care (POC) devices: Microfabrication, lab-on-a-chip, microfluidics etc								
detection, environmental and process industries, security and defence etc. Assessment Formative assessment Summative assessment Examination: 60% Coursework: 40%	-Application of biosensors and future commercialization outlook: Healthcare, food security, Halal foods								
Assessment Formative assessment Tutorial and feedback Summative assessment Examination: 60%	detection, environmental and process industries, security and defence etc.								
Summative assessment Examination: 60%	Assessment	Formative assessment Tutorial and feedback							
Coursework: 10%		Sumn	native assessment	t	Examination: 60%				
Coursework. 40/0					Coursework: 40%				
- 3 practical reports (20%)					- 3 practical report	s (20%)			
- 2 written assignments (10%)					 2 written assignm 2 class tests (10%) 	ents (10%) ۱			