Module code		SM-1201					
Module Title		Mathematical Methods for the Sciences					
Degree/Diplom		Bachelor of Science (Mathematics)					
Type of Modu		Major Core					
Modular Credits		4		Total student Workload	10	hours/week	
			Contact hours	4	hours/week		
Prerequisite			A-Level Mathematics or equivalent				
Anti-requisite		TG-1101 Mathematics for Engineering I ZZ-1104 Essential Mathematics for Digital Science					
This is a foundation courses in Mathematics which aims to broaden the concepts and techniques of A-level mathematics so as to provide an extensive toolkit for solving problems in applied mathematics and the physical sciences.							
Learning Outcomes On successful completion of this module, a student will be expected to be able to:							
Lower order:	30\%	- recall college-level pre-calculus algebra and functions. - define differentiation and integration.					
Middle order :	60\%	- manipulate complex numbers and use them to solve polynomial equations - apply vector algebra to solve problems involving lines and planes and other 3-dimensional geometry - manipulate and invert square matrices and use them to solve simple systems of linear equations - understand the precise definition of a limit, continuity and the derivative - calculate the limits of standard functions - show that a given function is continuous at a given point - apply the technique of differentiation to maximise and minimize functions and identify the important features of their graphs - apply the technique of integration to integrate a wide range of functions					
Higher order:	10\%	- apply and choose the appropriate mathematical methods to a wide variety of real-world problems especially in science - work independently					
Module Contents - Revision of pre-calculus algebra and function theory - Complex numbers: modulus, argument and complex conjugate; multiplication and division of complex numbers; de Moivre's theorem and its applications in solving polynomial equations - Vector algebra: scalar, dot and cross products, norm and unit vectors; use of vectors to define lines, planes and spheres; finding distances from a point to a line, a point to a plane, a line to a line and a line to a plane - Matrices: matrix transpose and matrix inverse; determinant, systems of linear equations - Limits: limits of functions; continuous functions; one-sided limits; limits at infinity - Differentiation: standard derivatives, application to finding maxima and minima, curve tracing; I'Hopital's rule - Integration: integral as anti-derivative; integration by substitution and by parts; improper integrals							
Assessment	Formative assessment		Tutorial and feedback.				
	Summative assessment		Examination: 60\%				
			Coursework: 40\% - 4 class tests (40\%)				

