Module code	SM-1201			
Module Title	Mathematical Methods for the Sciences			
Degree/Diploma	Bachelor of Science (Mathematics)			
Type of Module	Major Core			
Modular Credits	4	Total student Workload	10	hours/week
		Contact hours	4	hours/week
Prerequisite	A-Level Mathematics or equivalent			
Anti-requisite	TG-1101 Mathematics for Engineering I			
	ZZ-1104 Essential Mathematics for Digital Science			

Aims

This is a foundation courses in Mathematics which aims to broaden the concepts and techniques of A-level mathematics so as to provide an extensive toolkit for solving problems in applied mathematics and the physical sciences.

Learning Outcomes

On successful completion of this module, a student will be expected to be able to:

Lower order :	30%	recall college-level pre-calculus algebra and functions.define differentiation and integration.
- a 3-c - m of		 manipulate complex numbers and use them to solve polynomial equations apply vector algebra to solve problems involving lines and planes and other 3-dimensional geometry manipulate and invert square matrices and use them to solve simple systems of linear equations understand the precise definition of a limit, continuity and the derivative
		 - calculate the limits of standard functions - show that a given function is continuous at a given point - apply the technique of differentiation to maximise and minimize functions - apply the important features of their graphs - apply the technique of integration to integrate a wide range of functions
Higher order:	10%	 apply and choose the appropriate mathematical methods to a wide variety of real–world problems especially in science work independently

Module Contents

- Revision of pre-calculus algebra and function theory
- Complex numbers: modulus, argument and complex conjugate; multiplication and division of complex numbers; de Moivre's theorem and its applications in solving polynomial equations
- Vector algebra: scalar, dot and cross products, norm and unit vectors; use of vectors to define lines, planes and spheres; finding distances from a point to a line, a point to a plane, a line to a line and a line to a plane
- Matrices: matrix transpose and matrix inverse; determinant, systems of linear equations
- Limits: limits of functions; continuous functions; one-sided limits; limits at infinity
- Differentiation: standard derivatives, application to finding maxima and minima, curve tracing; l'Hopital's rule
- Integration: integral as anti-derivative; integration by substitution and by parts; improper integrals

Assessment	Formative	Tutorial and feedback.
	assessment	
	Summative	Examination: 60%
	assessment	Coursework: 40%
		- 4 class tests (40%)