Module code	SM-1202			
Module Title	Advanced Mathematical Methods for the Sciences			
Degree/Diploma	Bachelor of Science (Mathematics)			
Type of Module	Major Core			
Modular Credits	4	Total student Workload	10	hours/week
		Contact hours	4	hours/week
Prerequisite	SM-1201 Mathematical Methods for the Sciences			
Anti-requisite	TG-2101 Mathematics for Engineering II			

Aims

This is the second of two foundation courses in Mathematics which aim to broaden the concepts and techniques of A-level mathematics so as to provide an extensive toolkit for solving problems in applied mathematics and the physical sciences.

Learning Outcomes

On successful completion of this module, a student will be expected to be able to:

On successjui	compi	etion of this module, a stadent will be expected to be able to.	
Lower order :	30%	 identify sequences and series recall the techniques of finding limits and use them to calculate the limits of a wide range of sequences understand what is meant by double integrals 	
Middle order :	60%	 apply a number of standard tests to identify convergent and divergent infinite series generate the Taylor series and Fourier series corresponding to standard mathematical functions apply various advanced techniques to evaluate an extensive range of proper and improper integrals specifically methods of partial fraction and t-substitution for rational function evaluate double integrals in Cartesian coordinates and apply it in finding areas and volume reverse the order of integration in double integrals 	
Higher order:	10%	 to perform the correct methods for test of convergence of infinite series apply and choose the appropriate mathematical methods to a wide variety of real—world problems especially in science work independently 	

Module Contents

- Sequences: limits of sequences; monotone sequences and bounded sequences; squeezing theorem
- Series: convergence of infinite series; power series; Taylor Series
- Fourier Series: determining Fourier coefficients; identification of odd and even functions
- Further techniques of integration: method of partial fraction and t-substitution; areas of surfaces of revolution and volumes of solids of revolution
- Double integrals: Double integrals over rectangular regions; double integrals over non-rectangular regions; changing the order of integration; application to areas and volumes

Assessment	Formative	Tutorial and feedback.
	assessment	
	Summative	Examination: 60%
	assessment	Coursework: 40%
		- 4 class tests (40%)