Module code	SM-2203			
Module Title	Linear Algebra and its Applications			
Degree/Diploma	Bachelor of Science (Mathematics)			
Type of Module	Major Core			
Modular Credits	4	Total student Workload	10	hours/week
		Contact hours	4	hours/week
Prerequisite	SM-1201 Mathematical Methods for the Sciences			
Anti-requisite	None			
Aims				
Linear algebra is one of the most important branches of modern mathematics, with extensive				
applications in the natural sciences and the social sciences. This course covers basic linear algebra				
needed in mathematics and its applications.				
Learning Outcomes				
On successful completion of this module, a student will be expected to be able to:				
Lower order : 30%	 To perform standard operations with matrices, solve systems of linear equations using the fundamental method of Gaussian elimination and Cramer's Rule 			
Middle order : 60%	- To describe elementary properties of finite dimensional vector spaces and			
	linear transformations			
Higher order: 10%	- To apply linear algebra to problems drawn from business, economics,			
	ecology, demography and computer science			
Module Contents				
- Matrix algebra: addition, scalar multiplication, multiplication, transpose, elementary row				
operations, echelon forms, elementary matrices, inverses, determinants, adjoint.				
- Systems of linear equations: Gauss-elimination, Cramer's rule.				
- General finite-dimensional vector spaces: definition, examples, subspaces, linear combinations,				
spanning sets, linear dependence and independence, basis, dimension.				
- Linear transformations: definition, kernel, image, nullity, rank, the matrix of a linear				
transformation, geometric transformations (reflections, rotations, scaling, shears), change of				
basis, transition matrices, similar matrices, eigenvalues and eigenvectors, diagonalization.				
- Inner product spaces: orthonormal basis, orthogonal projections, the Gram-Schmidt algorithm.				
- Applications: least square solutions and curve fitting, approximation problems, power				
matrices, differential equations, computer graphics.				
Assessment Forn	native Tuto	rial and feedback.		
asse	ssment			
Sum	mative Exam	ative Examination: 60%		
asse	ssment Cour	ment Coursework: 40%		
	- 2 tests and 2 assignments (40%)			