Module code	SM-2302			
Module Title	Software for Mathematicians			
Degree/Diploma	Bachelor of Science (Mathematics)			
Type of Module	Major Option			
Modular Credits	4	Total student Workload	10	hours/week
		Contact hours	4	hours/week
Prerequisite	None			
Anti-requisite	None			

Aims

Mathematical software is what bridges higher mathematics to real world applications. On completing this module, the student should be able to use several popular mathematical software packages to effectively implement mathematical solutions to real world problems. This module enables students to conduct applied mathematical and statistical research.

Learning Outc	omes	
On successful (comple	tion of this module, a student will be expected to be able to:
Lower order :	0%	
Middle order :	10%	- Identify and apply software processes to mathematical problems
		- Plan coding solutions using pseudocode
Higher order:	90%	- Create functions to solve mathematical problems
		- Design and perform mathematical simulations
		- Justify appropriateness of coding techniques
		- Perform version control of computer code
		- Carry out data importation and perform basic analyses on it
		- Produce plots and graphics
		- Create and typeset a mathematics document
		- Carry out research that is reproducible
		- Work independently and in a team to solve coding problems

Module Contents

- Programming in at least two mathematics-oriented computer languages
- Linear and differential equations
- Data wrangling and visualisations
- Basic statistical analyses
- Typesetting a (mathematics) document
- Version control
- Creating reproducible research

Assessment	Formative assessment	Tutorial and feedback.
	Summative	Examination: 0%
	Summative	
	assessment	Coursework: 100%
		- Four tests (20%)
		- Two mini individual assignments (20%)
		- Two mini group assignments (30%)
		- One project assignment with written report (30%)