Module code		SM-4313				
Module Title		Mechanics				
Degree/Diploma		Bachelor of Science (Mathematics)				
Type of Module		Major Option				
Modular Credits		4	Total student Workload	10	hours/week	
			Contact hours	4	hours/week	
Prerequisite		SM-2201 Ordinary Differential Equations				
Anti-requisite		None				
Aims						
This module is intended to introduce students to the mathematical principles underlying the						
stability or motion of systems of particles or rigid bodies in Newtonian physics, to the more						
general kinematics of special relativity, and to the more advanced theoretical formulations of						
Lagrangian and Hamiltonian mechanics.						
Learning Outcomes						
On successful completion of this module, a student will be expected to be able to:						
Lower order :	40%	- understand the basic principles of mechanics				
Middle order :	40%	- analyse various problems in mechanics				
Higher order:	20%	- interpret the results of analyses				
		- work independently and in a team				
Module Contents						
Addition of forces. Newton's laws of motion.						
- Velocity and acceleration in polar coordinates. Conservation principles.						
- Variable mass problems. Motion of systems of particles and rigid bodies.						
- Relativistic kinematics.						
- Principle of least action.						
- Conjugate momenta, Hamiltonian function and Hamilton's canonical equations of motion.						
Assessment	Formative Tut		utorial and feedback.	orial and feedback.		
	asses	sment				
	Sumr	native E	xamination: 60%			
	asses	sment (Coursework: 40%			
		-	4 tests (40%)			