Module code		SM-4328					
Module Title		Introduction to Algebra and Number Theory					
Degree/Diploma		Bachelor of Science (Mathematics)					
Type of Module		Major Option					
Modular Credits		4		Total student Workload	10	hours/week	
				Contact hours	4	hours/week	
Prerequisite		SM-2203 Linear Algebra and its Applications					
Anti-requisite		None					
Aims							
This module aims to familiarise the student with basic properties of natural numbers and various							
algebraic structures.							
Learning Outcomes							
On successful completion of this module, a student will be expected to be able to:							
Lower order : 40% - use the Euclidian and division algorithms and solve linear congruences							
Middle order : 40% -apply certain results of number theory in cryptography							
Higher order:	Higher order:20%- understand main algebraic structures and use their properties						
Module Contents							
Method of mathematical induction. Division and Euclidian algorithm.							
- Greatest common divisor and least common multiple. Primes and Fundamental Theorem of							
arithmetics. Congruences and modular arithmetics. Structure of Zn. Solving linear congruences.							
Chinese Remainder Theorem.							
- Fermat Little Theorem. Euler generalization. Public key cryptography.							
- Permutations. Order and sign. Cycle decomposition. Definition and examples of groups. Semi-							
groups. Rings and fields.							
- Basic properties of groups. Order of an element. Subgroups. Cyclic groups. Generating sets.							
- Cosets. Lagrange Theorem. Fermat and Euler Theorems. Homomorphisms. Normal subgroups.							
Assessment	Form	ative	Tuto	rial and feedback.			
	asses	sment					
	Sumr	native	Exam	ination: 60%			
	asses	sment	Cour	sework: 40%			
			- 1 cl	ass test (20%)			
			- 1 as	signment (20%)			