Module code		SM-4329				
Module Title		Numerical Approximation				
Degree/Diploma		Bachelor of Science (Mathematics)				
Type of Module		Major Option				
Modular Credits		4		Total student Workload	10	hours/week
				Contact hours	4	hours/week
Prerequisite		SM-2204 Numerical Analysis				
Anti-requisite		None				
Aims						
The aim of this r	nodule	is to introc	luce va	arious data approximation metho	ods such as th	e least square
approximation,	appro	ximation by	inter	polation by polynomials, splines	and radial bas	sis functions, to study
some technique	s from	Computer	Aided	Geometric Design (CAGD) for the	e construction	of curves and
		uce Wavele	ts and	its application to signal and ima	ge processing	
Learning Outco						
	T	*		a student will be expected to be		
Lower order :	40%					
		- understand the method of interpolation using natural cubic spline, B-splines and				
		radial basis functions				
	- understand Wavelets and its application to signal and image processing					
Middle order :	40%	- develop and analyse several algorithms for computing approximation of functions				
Higher order:	20%	- construct curves and surfaces using Bezier curves and B-Splines				
		- construct wavelets and apply them to signal and image processing				
		- work ind	epend	ently and in a team		
Module Conten						
				r spaces, Weierstrass Theorem.		
-				r product spaces, Projection The	-	
				orthogonal basis for a finite dime	ensional subs	pace of inner product
-	-	polynomia		mial Rungo's Internalation Cubi	c Splings Mir	Norm
-			-	mial, Runge's Interpolation, Cubi al Cubic Spline, and Interpolation	-	
-				ic Design: Cubic Bezier Curves, C		
				Orthogonal Splitting and Wavel		
wavelets.	withte	Solution A	1019515,			
Assessment	Form	ormative Tuto		ial and feedback.		
	assessment					
				xamination: 60%		
		sment	-	sework: 40%		
				sts (30%)		
				signment (10%)		
			± u3	SiB		