Module code		SM-4333				
Module Title		Financial Mathematics				
Degree/Diplom		Bachelor of Science (Mathematics)				
Type of Module		Major Option				
Modular Credits		4	Total student Workload	10	hours/week	
		Contact hours	4	hours/week		
Prerequisite			SM-2201 Ordinary Differential Equations SM-2203 Linear Algebra and its Applications			
Anti-requisite		None				
Aims The module is designed to enable students to acquire a knowledge and understanding of some of the basic concepts of financial mathematics, including stochastic models for stocks and the pricing of contingent claims.						
Learning Outcomes On successful completion of this module, a student will be expected to be able to:						
Lower order:	40\%	- list the functions of a stock market and describe the properties of the more important financial instruments that are traded in them (bonds, stocks and options)				
Middle order:	40\%	- calculate the market price of a bond; estimate the drift and volatility of a stock from a sequence of stock prices; use the Black-Scholes and binomial models to price options				
Higher order:	20\%	- construct stochastic models of high-volatility financial assets - work independently and in a team				
Module Contents - Introduction to options and markets: Definition and brief history of financial derivatives - Asset Price model: Brief review of additive and multiplicative model; general random walk model; geometric Brownian motion model and Wiener process. - Black-Scholes partial differential equation: Taylor's series, Ito's lemma and random diffusion equation. - Black-Scholes model: Arbitrage principle, hedging techniques, Greek letters, Black-Scholes analysis and principle; boundary and final conditions for Black-Scholes formulae. - Variation of the Black-Scholes model: Deterministic and stochastic volatility; random interest rate; dividend paying option; American option and transaction costs. - Binomial model: Risk-neutral principle, discrete random walk and price jumps.						
Assessment	Form asses	ative sment	Tutorial and feedback.			
	Summ	mative	Examination: 60\%			
			Coursework: 40\% - 2 class tests (40%)			

