Module code	SM-4334			
Module Title	Advanced Operations Research			
Degree/Diploma	Bachelor of Science (Mathematics)			
Type of Module	Major Option			
Modular Credits	4	Total student Workload	10	hours/week
		Contact hours	4	hours/week
Prerequisite	SM-4332 Operations Research I			
Anti-requisite	None			

Aims

The module is designed to provide the students with the skills of advanced scientific techniques of Operations Research for the best decision making of the real world problems.

Learning Outcomes

On successful completion of this module, a student will be expected to be able to:

Lower order :	40%	- learn further techniques solving linear programming problems
Middle order :	40%	- learn different scientific techniques to solve integer programming problems
		and different types of non-linear programming problems
		-gain introductory knowledge on dynamic programming
Higher order:	20%	- economically interpret real world problems

Module Contents

- Advanced Topics in Linear Programming: The Revised Simplex Algorithm, Economic interpretation of duality and the role of duality theory in sensitivity analysis, Solution of degenerate LPP by simplex method, Integer Programming and its solution.
- Non-linear Programming.
- Game Theory.
- Utility Theory and Multi-factor Decision Making: Decision making by applying Bayes' rule. Utility theory and multi-factor decision making.
- Probabilistic Inventory Control Models.
 Dynamic Programming: Introduction, Notations, Developing an optimal decision policy, Some illustrative examples, Introduction to a continuous state dynamic programming problem.

Assessment Formative		Tutorial and feedback.
	assessment	
	Summative	Examination: 60%
	assessment	Coursework: 40%
		- 2 class tests (40%)