Madula coda		SD 1202				
Module Title		Thermal Dhysics and Ontics				
		Deckeler of Giorge (Applied Divise)				
Degree/Diploma		Bachelor of Science (Applied Physics)				
Type of Module		Major Co	ore		1	
Modular Credits		4		Total student workload	10	hours/week
				Contact hours	4	hours/week
Prerequisite		A-level Physics or equivalent				
Anti-requisite SP-1303 Thermal Physics and Optics						
Aims						
This module aims to provide students with a logical presentation of the basic concepts and principles of thermal						
physics and optics in physics and strengthen the understanding of the concepts and principles through a range						
of real-life applications.						
Learning Outcomes:						
On successful completion of this module, a student will be expected to be able to:						
Lower order : 30% - recognise the three phases of matter: solid, liquid and gas, how their properties						
	depends on thermal motion and the forces between atoms and molecules					
 describe the fundamental concepts related to various forms of energy: internal, 						us forms of energy: internal,
enthalpy, entropy, free internal energy and free enthalpy						halpy
 describe the basic concept of thermal equilibrium 						
- describe the basic phenomena due to light matter interaction.						nteraction.
Middle order : 60% - describe polarization and the properties of polarizing components						ig components
	- describe the concept of quantum nature of light and discuss the limitations of classic					
	optics, derive the thermodynamic temperature scale from the operation of an ideal					
	Carnot heat engine					
		-recognise the fundamental limits for the efficiency of heat engine				
Higher order:	der: 10% - describe interferometer principles and its applications.					
		- describe and apply the basic principles of geometrical optics.				
	- describe the kinetic theory of gases and how this theory can be applied to what is					
	actually observed in real gases					
		- explain and use laws of thermodynamics to solve simple problems related with heat				
		and worl	k chan	ges to practical systems.		
Module Contents						
-Thermal Physics: - The Zeroth law of thermodynamics, thermometry and temperature scales, thermal						
expansion, heat capacity and phase changes, heat transport and its applications, First law of thermodynamics,						
internal energy and neat capacity, reversible and irreversible processes, enthalpy, thermal efficiency,						
applications of first law of thermodynamics; Second law of thermodynamics, entropy, entropy changes,						
applications of combined first and second laws of thermodynamics; The kinetic theory of gases, adiabatic						
processes for an used gas, the equipartition of energy, distribution of molecular speeds, mean free path, molar						
- Ontics: Review of light theory: Ray approximation in geometrical ontics: reflection, refraction, Huygons's						
ripciple dispersion and prisms. Fermat's principle image formation, this lens equation, multiple this lenses						
thick lenses lens aberrations. Ontical systems interference diffraction thin-film interference. Michelson						
interferometer diffraction grating x-ray diffraction and polarization						
Assessment	ative Class test discussions and feedback					
Assessment	25505	smont	Class			
	Sum	native	Evan	pination: 60%		
	accer	sment				
	asses	SHIEIIL		Sewulk. 40%	1	
			- z as	signments (1 per section) (40%)	