Module code		SP-2206					
Module Title		Condensed Matter Physics					
Degree/Diploma		Bachelor of Science (Applied Physics)					
Type of Module		Major Option					
Modular Credits		4		Total student Workload	8	hours/week	
				Contact hours	4	hours/week	
Prerequisite		None					
Anti-requisite		SP-2306 Condensed Matter Physics					
Aims							
To provide fundamental studies of the properties of crystalline and non- crystalline materials at the							
microscopic level and to relate these studies to the applications of materials in microelectronic,							
optoelectronic, and other industries.							
Learning Outcomes							
On successful completion of this module, a student will be expected to be able to:							
Lower order : 30% - Identify crystal structures of solids, and explain electronic band structures						onic band structures.	
		- Understand the theory on free electron model and models of heat capacity					
		IN SOLIC	JS.				
Middle order :	60%	6 - Analyse X-ray diffraction patterns					
		- Analyse the electron energy distribution in solids using the Fermi – Dirac					
		- Apply the principles of semiconductors to solid state devices					
		····					
Higher order:	10%	- Evaluate the outcome of the analyses					
		- Work in a group to relate theory with application, and					
		communicate individually in the form of presentation or report.					
Module Contents							
- Crystal structures, bonding in solids, crystal diffraction							
- Crystal dynamics, lattice heat capacity, concept of phonon, thermal conduction							
- Free electron model, quantum theory of metals, Fermi distribution, electron transport							
- Electron band structure, semiconductors, origin of band gap							
- Solid state devices, p-n junction, transistors, diode, solar cells, etc.							
•	F	- 41					
Assessment	Form	ative	wee	kiy Tutorial Sessions and Discussion	1		
	assessment						
Summa							
	asses	sment	Cour	sework: 40%	、		
			- 2 In	dividual Written Assignments (20%)		
			- 1 Cl	ass lest (10%)			
			- 1 G	roup Presentation (10%)			