Module code		SP-4302			
Module Title		Environmental Physics			
Degree/Diploma		Bachelor of Science (Applied Physics)			
Type of Module		Major Option			
Modular Credits		4	Total student Workload	8	hours/week
			Contact hours	4	hours/week
Prerequisite		None			
Anti-requisite		None			
Aims					
The module is designed for students to understand the physics principles underpinning the environment.					
Learning Outcomes					
On successful completion of this module, a student will be expected to be able to:					
Lower order :	40%	- describe the b	pasic physical principles that gover	n the atm	nosphere, atmospheric
		motions, tra	nsport of pollution, radioactivity a	ind techni	ques in
		Environmen	tal Physics		
Middle order :	40% - apply these principles in analysing various systems concerning the atmospher				
		and its motion	on, transport of pollution and radi	oacitivty	using quantitative
		methods			
Higher order: 20% - evaluate example so		e scenarios pertaining to energy balance, atmospheric			
		stability, pol	lutant dispersion, radioactivity and	d meteoro	ological
		measuremei	nts		
		- Present case s	studies or current issues on the en	ivironmen	nt

Module Contents

- *The Atmosphere*: evolution of the earth's atmosphere, formation of ozone layer, thermal structure of terrestrial systems, Runaway Greenhouse effect, thermal layers of the atmosphere, influence of solar radiations on earth atmosphere, diffuse solar adiations and controlling factors, distribution of sunshine hours, effect of geomagnetic disturbances.
- *Atmospheric Motions*: Atmospheric thermodynamics and radiation theory, equation of motion for the atmosphere, tropical motion systems. global electric circuit, Solar modulation of atmospheric electrification, Global circulation model, numerical weather forecasting.
- *Transport of Pollution*: Atmospheric stability, temperature inversion, dispersion equation. Gaussian plume model dry deposition of pollutant from stacks.
- *Radioactivity:* Characteristics of radioactive radiations, measurement and application of radio-isotopes, units of radiation dose, biological effects of nuclear radiation and safety measures.
- Techniques in Environmental Physics: Common weather and Doppler radar, SODAR, LASER, LIDAR, biosensors principles and applications, bio-acoustic perception of loudness, combination of tones sound analysis, noise pollution index, interference level and measurement of noise level. Ultrasound imaging and applications.

Assessment	Formative assessment	In-class questions and feedback
Sur	Summative	Examination: 60%
	assessment	Coursework: 40%
		- 2 reports (20%)
		- 1 class test (10%)
		- 1 project (10%)