Module code		SP-4308					
Module Title		Nuclear and Particle Physics					
Degree/Diploma		Bachelor of Science (Applied Physics)					
Type of Module		Major Option					
Modular Credits		4		Total student Workload	10	hours/week	
			Contact hours	4	hours/week		
Prerequisite			None				
Anti-requisite		None					
The module is designed for students to understand the physics principles underpinning nuclear and particle physics.							
Learning Outcomes On successful completion of this module, a student will be expected to be able to:							
Lower order :	20\%	- describe the patterns of nuclear masses and sizes using simple models and identify the basic constituents of matter and the fundamental forces between them					
Middle order :	50\%	- apply calculations involving the energy released by important nuclear decays and reactions - analyse various types of nuclear decay processes using quantitative calculations on radioactivity - apply conservation laws to identify the forces responsible for particular reactions - apply Feynman diagrams to represent elementary processes					
Higher order:	30\%	- interpret the results of analyses, and make an appropriate report for an effective communication - present case studies or current issues or specific topics individually or collaboratively - work co-operatively in a team					
Module Contents Nuclear Physics: - Rutherford Scattering, properties of nuclei- Mass, size, charge, magnetic moment - Nuclear stability, binding energy and nuclear forces - Nuclear models, The shell model and liquid-drop model, Radioactivity- half-life estimation - Decay processes, Alpha, Beta \& Gamma Decay - Natural Radioactivity- carbon dating, radiation dosage Particle Physics: - Basic properties of cosmic rays, particle accelerators and detectors - The four forces, the quest for unification and links with cosmology - The Standard Model, fermions and their gauge bosons; - Leptons and the electroweak force - The Higgs mechanism and Higgs boson, The strong force, Quarks and gluons							
Assessment	Formative assessment		In-class questions and feedback				
	Summative assessment		Examination: 40\%				
			Coursework: 60\% - 2 work-based problems (20\%) - 1 group project (10\%) - 1 written assignment (10\%) - 1 oral presentation (10\%) - 1 class test (10\%)				

